It has become a common idiom in sbase to check strlcat() and strlcpy()
using
if (strl{cat, cpy}(dst, src, siz) >= siz)
eprintf("path too long\n");
However, this was not carried out consistently and to this very day,
some tools employed unchecked calls to these functions, effectively
allowing silent truncations to happen, which in turn may lead to
security issues.
To finally put an end to this, the e*-functions detect truncation
automatically and the caller can lean back and enjoy coding without
trouble. :)
For loop detection, a history is mandatory. In the process of also
adding a flexible struct to recurse, the recurse-definition was moved
to fs.h.
The motivation behind the struct is to allow easy extensions to the
recurse-function without having to change the prototypes of all
functions in the process.
Adding flags is really simple as well now.
Using the recursor-struct, it's also easier to see which defaults
apply to a program (for instance, which type of follow, ...).
Another change was to add proper stat-lstat-usage in recurse. It
was wrong before.
While auditing du(1) I realized that there's no way the over 100 lines
of procedures in du() would pass the audit.
Instead, I decided to rewrite this section using recurse() from libutil.
However, the issue was that you'd need some kind of payload to count
the number of bytes in the subdirectories and use them in the higher
hierarchies.
The solution is to add a "void *data" data pointer to each recurse-
function-prototype, which we might also be able to use in other
recurse-applications.
recurse() itself had to be augmented with a recurse_samedev-flag, which
basically prevents recurse from leaving the current device.
Now, let's take a closer look at the audit:
1) Removing the now unnecessary util-functions push, pop, xrealpath,
rename print() to printpath(), localize some global variables.
2) Only pass the block count to nblks instead of the entire stat-
pointer.
3) Fix estrtonum to use the minimum of LLONG_MAX and SIZE_MAX.
4) Use idiomatic argv+argc-loop
5) Report proper exit-status.
The HLP-changes to sbase have been a great addition of functionality,
but they kind of "polluted" the enmasse() and recurse() prototypes.
As this will come in handy in the future, knowing at which "depth"
you are inside a recursing function is an important functionality.
Instead of having a special HLP-flag passed to enmasse, each sub-
function needs to provide it on its own and can calculate results
based on the current depth (for instance, 'H' implies 'P' at
depth > 0).
A special case is recurse(), because it actually depends on the
follow-type. A new flag "recurse_follow" brings consistency into
what used to be spread across different naming conventions (fflag,
HLP_flag, ...).
This also fixes numerous bugs with the behaviour of HLP in the
tools using it.